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Abstract: The scale invariant feature transform (SIFT) algorithm is particularly effective in 
distinctive feature extraction. However, its matching is time consuming. The reason lies in that the 
Euclidean distance is used to measure the similarity of two SIFT descriptors in the SIFT matching. To 
improve the matching efficiency, in this paper, we present a novel image matching scheme (BI-SIFT) 
based on Binarized SIFT descriptors. First, 128-D SIFT descriptor is converted into 256-bit binarized 
SIFT (BSIFT) descriptor which retains the distinctive power of the original descriptor. Generally, the 
distance similarity meature between BSIFT descriptors by Hamming distance. However, it can 
introduce some extra false matches in the matching phase. Therefore, to avoid this problem, we also 
present a novel distance metric method for BSIFT descriptors. We evaluate our method on the 
UKBench data set. Experimental results show the superior performance of BI-SIFT method 
outperforms the state-of-the-art algorithms in image matching.  

1. Introduction 
Image matching is a crucial step in many image analysis tasks, such as image retrieval, image 

categorization and object recognition. There are basically two kinds of matching method, based on 
gray level of matching and based on feature matching respectively [1]. Promising results to image 
matching by utilizing local features were shown in previous works [2-6]. Like SIFT local descriptor, 
SIFT-based methods have been widely applied in image matching [7]. The SIFT algorithm extracts 
image features by searching the keypoints in the image, and then calculating the descriptors from the 
patch around the keypoints. The patch is first divided into 16 areas with 8 directions in each area, and 
each direction is given a value. Finally, 128-D descriptor is obtained. The 128-D descriptor is robust 
to variance in images (e.g., scale, rotation, and illumination variance) [8]. 

In the matching procedure, the 128-D descriptors of all keypoints in two images are extracted. The 
128-D descriptors of each keypoint of the first image are compared to those of the second one. The 
Euclidean distance is used as the similarity measurement of two descriptors to find the nearest 
matching keypoint. SIFT algorithm usually generates hundreds to thousands of keypoints for each 
image. And correspondingly, the SIFT features could be numerous in a large image database. 
Moreover, the distance computation involves taking square root. Therefore, image matching in the 
SIFT method to large-scale image database is highly time-consuming. 

To solve this problem, many approaches have been proposed in the last few years. These methods 
are classified into two types. The first is to reduce the computation complexity by decreasing the 
number [9] and dimension [10] of SIFT descriptors. Alitappeh et al. [9] proposed a method which 
uses the clustering technique to reduce the number of keypoints by omitting similar points. Their 
method decreases the time complexity in matching. However, the clustering procedure needs some 
time, and thus, the total processing time still has not been significantly reduced. Ke et al. [10] 
proposed applying PCA to reduce the size of the descriptor and thereby decreasing the feature 
matching time. However, this method needs an offline stage to train and estimate the covariance 
matrix used for PCA projection. This typically requires the system to collect and trains a large 
number of images. The second way to increase the matching speed is the binarized descriptor 
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approach [11], which converts the SIFT descriptors to binarized SIFT (BSIFT) descriptors. Ni [11] 
first proposed a binary string approach for SIFT keypoints. Chen et al. [12] proposed to compare the 
absolute difference of 128-D SIFT descriptor with the threshold, and the comparison results were 
denoted by binary digits (0 or 1). This approach was simple and drastically decreased the matching 
time but required predetermining the threshold.  Zhou et al. [13] compared the 128 values of a SIFT 
descriptor individually with two threshold values. The comparison results were denoted by three 
combinations, namely 11, 10, and 00, specifically, the 128 values of the SIFT descriptor were ranked 
in descending order, and the 32th and 64th values were exploited as the thresholds. This approach can 
improve matching accuracy to some extent. However, 2-bit binary number can express 22=4 possible 
states. Only 3 states have been used in [13]. Su et al. [14] presented a reflection invariant binary 
descriptor named MBR-SIFT and a fast matching algorithm that includes a coarse-to-fine two-step 
matching strategy in addition to two similarity measures for the MBR-SIFT descriptor. Nickfarjam et 
al. [15] made use of SIFT for binary image matching by taking the power of Hough Transform in line 
detection, which had good performance for binary images containing straight lines. Additionally, The 
Hamming distance between two BSIFT descriptors is calculated during the feature matching process. 
The distance computation between two BSIFT descriptors is hence reduced to more efficient bit-wise 
operations instead of square root, and therefore, the feature matching time can be greatly decreased. 
The Hamming distance between two BSIFT descriptors may not be consistent with the Euclidean 
distance between them, therefore, SIFT binarization are adopted to improve the computation 
efficiency in the image matching process, with sacrifice of accuracy to some extent. Moreover, the 
Hamming distance, which can introduce some extra false matches in the matching phase.  

Hence, we take fully into account the problems of highly time-consuming of SIFT method and 
Hamming distance can introduce some extra false matches in the image matching. In this paper, we 
propose a novel SIFT descriptor binarization approach in which the difference values of 128-D SIFT 
descriptor are compared with threshold and the results are expressed with 2-bit binary number with 4 
states. The value for the threshold is derived by the linear relationship between the threshold and the 
standard deviation of 128-D SIFT descriptor. To avoid the false matches introduced by the Hamming 
distance, we redefine distance similarity measure between 256-bit BSIFT descriptors. Finally, we 
conduct image matching experiments on five representative image pairs with rotation, scale, viewport, 
illumination and blur variance from the UKBench data set. Compared with other state of the art 
algorithm, the proposed method is better both in accuracy and efficiency. 

This paper is organized as follows. Section 2 describes the proposed BI-SIFT method, which 
includes a novel SIFT descriptor binarization approach and distance similarity measure between 
256-bit BSIFT descriptors. The experimental results and analysis that evaluate the performance of the 
proposed method is in Section 3. Finally, Section 4 draws together some conclusions.  

2. Proposed method 

2.1. BSIFT Descriptor.   

In this stage, the 128-D SIFT descriptor vector (D0, D1,…, D127) is transformed into a binary 
string. First, the difference value ADi (i=1, 2,…, 128) of the two adjacent values in a descriptor (Di 
and Di+1) is calculated according to Eq.1. 

1

0 127

, 127
,

i i
i

D D if i
AD

D D otherwise
+ − <

=  −
                                       (1) 

The method for binarizing ADi can be classified into two categories. The first category [12] 
proposed to compare ADi with the predefined threshold M. The comparison result is denoted by zero 
or one according Eq.2 and Eq.3, where M is the average or median value of 128-D SIFT vector. 
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The second category [13] directly compares each Di of 128-D vector with two thresholds, M1 and 
M2. The comparison results are denoted by 11, 10, and 00, as shown in Eq.4. 
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In essence, the first category converts the original 128 decimal values to a 128-bit binary value, 
which decreases the memory requirements and reduces the matching time. However, in this method, 
the absolute difference value is compared with the threshold and the sign of difference value is 
neglected. Correspondingly, (1, 10) and (10, 1) will be binarized as the same value and completely 
different values, such as (1, 10, 1) and (10, 1, 10), will be categorized into the same values, which will 
reduce the distinctive power of SIFT descriptors. As for the distinctive power of SIFT descriptors, the 
second category is better than the first one. However, the binarization result is related to the two 
thresholds, M1 and M2. Furthermore, from the perspective of information theory, a 2-bit value can 
represent four states, but [13] only adopted three states. Therefore, to solve the aforementioned 
problems, the proposed binarization method retains the sign of difference value and adopts four states 
for 2-bit binary value, as shown in Eq.5. 
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 − < <=  ≤ <
 ≥

      (5) 

where T is a positive. Eq.5 converts the original 128-D descriptor into a BSIFT descriptor with a 
256-bit binary value, which is expressed as B={b0, b1, …, b255}. 

2.2. Threshold Configuration.  
In the process of binarizing 128-D descriptors of SIFT features in the image, incorrect threshold 

(too large or too small) will reduce the distinctive power of binary strings and further affect the 
distance between 128-D BSIFT descriptor pairs as well as the matching results [16].  In the 
configuration of the threshold value, hard-threshold [12] will lead to quantization error to some extent 
[17], whereas soft-threshold is adaptive to the data variation and is superior to hard-threshold. In the 
existing soft thresholding methods, the mean or median of 128-D vector is usually exploited as the 
threshold [13]. Yet both of them can not reflect the diversity of data distribution in the 128-D 
descriptor. ADi is compared with the threshold in Eq.5. Intuitively, considering that the goal of the 
threshold configuration is to reflect the diversity between ADi as much as possible. Therefore, we 
exploit the standard deviation of the 128-D SIFT vector (D0, D1, …, D127) to configure the 
threshold, as shown in Eq.6 to Eq.8. 

127
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∑
       (6) 
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T a bσ= × +         (8) 

Where D  and σ are the mean and standard deviation of the 128-D SIFT vector (D0, D1,…, D127), 
respectively; and a and b are constants. Through numerous experiments, the optimal a and b values 
were determined to be 3.7 and 0, respectively.  

Generally, the similarity between 128-D descriptors for SIFT keypoints is determined by 
Euclidean distance, whereas Hamming distance is used for the similarity between binarized 
descriptors. In order that the binarized descriptors retain the distinctive power of the original 128-D 
descriptor, it is required that Hamming distance of binarized descriptors is consistent with Euclidean 
distance of SIFT descriptors, that is, the greater the Euclidean distance of 128-D descriptors is, the 
greater the Hamming distance of the corresponding BSIFT descriptors is, and vice versa. To 
demonstrate the efficiency of the proposed thresholding approach, both Hamming distance and 
Euclidean distance of keypoint pairs for numerous images are tested. The proposed method, which is 
denoted by BI-SIFT1 in Figure 1, is compared with Chen’s [12] and Zhou’s [13] methods. As shown 
in Figure 1, when the Euclidean distance for Chen’s and Zhou’s methods is within the range of 32 to 
40, the corresponding Hamming distance is the same value. In contrast, the relationships between 
Hamming distance and Euclidean distance for the proposed binarization method remain consistent, 
which further demonstrates the accuracy of the proposed thresholding approach. 

 
Fig 1. Euclidean Distance Versus Hamming Distance 

2.3. Distance Metric of the Binarized Descriptors.  
After feature extraction from the matched image and feature vector binarization, the following 

step is the distance metric of the BSIFT descriptors, that is, binary vectors. In the BSIFT methods, 
Hamming distance is exploited to the similarity between BSIFT descriptors. In order to improve the 
matching accuracy, we propose the improved Hamming distance metric to measure the distance 
according to the distribution characteristics of the binary values. 
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Fig 2. The Encoding of ADi Versus Hamming Distance 
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According to Eq.5, ADi is encoded as a set of binary values 00, 01, 10, and 11 according the 
relationship between ADi and threshold T. In general, the distance between one of the binary values 
and the rest binary values should be the same. However, if we directly use Hamming distance, the 
result is not satisfactory. As shown in Figure 2, ADi axis is divided into four parts (e.g., 00, 01, 10, 
and 11) by –T, 0, and T. Suppose that binary value 00 is selected as reference. The Hamming distance 
between 00 and 01, 10 is 1, whereas the Hamming distance between 00 and 11 is 2, which will lead to 
inaccurate matching. To avoid this problem, in the process of calculating the distance between BSIFT 
descriptors, we add 1 to counter P only when the Hamming distance between BSIFT descriptors is 0, 
which means both BSIFT descriptors are the same. Furthermore, because ADi is encoded with 2-bit 
binary values, BSIFT descriptor should be equally divided by 2n(0≤n≤7) in the calculation of the 
distance between 256-bit BSIFT descriptor pairs. In this paper, we set n=2, that is, 256-bit BSIFT 
descriptor are equally divided into 64 parts. In other words, each part contains 4-bit. The main reason 
is that each 4-bit binary values in 256-bit BSIFT descriptor reflect the relationship between Di in the 
original 128-D SIFT descriptor and its previous value Di-1 or the following value Di+1. When two 
SIFT descriptors are similar to each other, the size relationships between the corresponding Di and 
Di-1 (or between Di and Di+1) in the two descriptors should be highly correlated. In order to reflect 
this correlation, each 256-bit BSIFT string 0 1 255( { , , , })B b b b=  is equally divided into 64 parts, and 
each part contains 4 bits, that is, 0 1 63{ , , , }B bg bg bg=  , where *4 *4 1 *4 2 *4 3{ , , , }i i i i ibg b b b b+ + += . Suppose we 
need to calculate the distance between two BSIFT strings 1 1 1 1

0 1 63{ , , , }B bg bg bg=   
and 2 2 2 2

0 1 63{ , , , }B bg bg bg=  . Each pair of corresponding part (e.g., 1
ibg and 2

ibg ) is compared. If the 
Hamming distance between the two parts is 0, P is increased by 1. Otherwise, P remains the same. 
Then the counter P is normalized by 64. A large value of P indicates that two binary strings B1 and B2 
are more similar and vice versa. Generally, it is required that when two binary strings B1 and B2 are 
more similar, the value of P is smaller, and vice versa. We here exploit arccos(P) to meet this 
requirement. As known to all, arccos(P) decreases monotonously in the interval [0,1], hence the 
aforementioned requirement is satisfied. Algorithm 1 provides the pseudocode for summarizing the 
aforementioned method of distance metric. In algorithm 1, the output P is the distance between B1 and 
B2. 

 Algorithm 1: Distance Metric 
Input: the two binary strings to be matched, },,,{= 1

255
1
1

1
0

1 bbbB   and 
},,,{= 2

255
2

1
2
0

2 bbbB  , and the counter P=0 
Output: Distance P between B1 and B2 
For i=0 to 63 
      },,,{= 1

3+4*
1

2+4*
1

1+4*
1

4*
1

iiiii bbbbbg  
},,,{= 2

3+4*
2

2+4*
2

1+4*
2

4*
2

iiiii bbbbbg  
     If Hamming ),( 21

ii bgbg =0 
           P=P+1 
End For 
P=arccos(P/64) 

Given the image pair to be matched, each keypoint in one given image needs to compare with all 
the keypoints in another given image by calculating distance P as described in Algorithm 1. A 
common issue when working with keypoint-based feature matching is to establish a threshold for 
distinguish true matches from false matches[18]. To suppress matches that could be falsely matched, 
following Lowe’s suggestion [7], we only accept the matches if the ratio between the distances to the 
nearest and the secondary nearest points is less than a predefined value distratio, as shown in Eq.9. 

1 2?
match if P P distratio

match or not
not match otherwise

< ∗



                                                          (9)  
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where P1 and P2 represent the smallest distance and secondary smallest distance, respectively. 
Additionally, the predefined value distratio should be selected according to realistic scenarios. 

3. Experiment 
We evaluated the proposed approach on the public dataset, the UKBench dataset [19], which 

contains 10,200 images from 2,550 object/scene groups. Each group consists of four images taken 
from different views or in different imaging conditions.  

 
Fig 3. Examples of database image pairs 
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The representative image pairs are shown in Figure 3. Some of the results are presented with recall 
versus 1-precision [10, 20-22] , as defined in Eq.10 and Eq.11, where tn and en represent the number 
of correct matches and ground truth number of matches between the images, respectively and fn and 
qn represent the number of false matches and total number of matches between the images, 
respectively. To evaluate the performance of the image matching method, we need to determine 
matching pairs as much as possible with high accuracy [21], that is, when 1-precision is the same, the 
performance for the method with a higher recall is better.  

tnrecall
en

=                               (10) 

1 fnprecision
qn

− =                                                 (11) 

Image matching experiments are conducted by randomly selected 200 image pairs with rotation, 
scale, viewport, illumination and blur variance from the UKBench data set. In order to show 
respectively the advantage of proposed binarization and distance metric, BI-SIFT1 includes the 
proposed binarization method and Hamming distance, and BI-SIFT includes the proposed 
binarization method and distance metric method. The two methods are compared with SIFT method, 
Chen’s method, and Zhou’s method in the image matching experiments. It should be noted that, the 
binarization methods in Chen’s and Zhou’s are exploited the methods in [12] and [13], respectively, 
the proposed distance metric method is used to evaluate the similarity of two binarized descriptors. 

 
Fig 4. Recall versus 1 minus Precision for Five Methods 

The matching results of BI-SIFT, BI-SIFT1, SIFT, Chen’s, and Zhou’s methods are presented in 
Figure 4 with recall versus 1 minus precision. Distratio in Eq.9 is in the interval [0.58, 0.65] for SIFT 
method and [0.83, 0.90] for other methods, respectively. It can be seen from Figure 4 that BI-SIFT 
has the best performance for accuracy. Therefore, it can be proven that the proposed binarization 
method and distance metric has better performance in image matching.  

Table 1. The Efficiency for Five Methods 

- SIFT Chen’s Zhou’s BI-SIFT1 BI-SIFT 
Avg. feature binarization time for an image - 0.150 0.213 0.480 0.480 

Avg. matching time for an image 33.49 11.91 22.25 17.74 22.30 
Matching speedup ratio (relative to SIFT) 1 2.81 1.51 1.89 1.50 

It can be seen from the second row in table 1, in terms of the average feature binarization time for 
an image, our method spent the longest time than the other methods. This is due to the fact that, 
compared with Chen’s and Zhou’s, it is required to calculate the mean and standard deviation of the 
128-D SIFT vector in the binarization process. In addition, Table 1 also shows that SIFT spent the 
longest than the other methods in matching.  
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In summary, the proposed method is superior to SIFT method in matching speed, accuracy and 
recall. Compared with Chen’s and Zhou’s methods, the proposed method can significantly improve 
accuracy as well as ensure the recall and the matching speed.  

4. Conclusion 

A novel SIFT descriptors binarization method has been presented in this paper. 128-D SIFT 
descriptor is converted into 256-bit binary string. Modified Hamming distance has been proposed to 
measure the similarity between binary strings. Image matching experiments are conducted by 
randomly select some image pairs with rotation, scale, viewport, illumination and blur variance from 
the UKBench data set. The results show the reliable matching performance. However, image 
matching performance is slightly lower than SIFT method. In the future, how to improve the recall 
and guarantee the high accuracy will be further studied. 
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